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A forbidden zones theorem is proven in the present article.           

If some non-zero lower bound exists for the variance of a random 

variable, whose support is located in a finite interval, then non-zero 

bounds or forbidden zones exist for its expectation near the 

boundaries of the interval.  

The article is motivated by the need of a theoretical support for 

the practical analysis of the influence of a noise that was performed 

for the purposes of behavioral economics, utility and prospect 

theories, decision and social sciences and psychology.  

The four main contributions of the present article are: the 

mathematical support, approach and model those are developed for 

this analysis and the successful uniform applications of the model in 

more than one domain.  

In particular, the approach supposes that subjects decide as if 

there were some biases of the expectations.  

Possible general consequences and applications of the theorem 

for a noise and biases of measurement data are preliminary 

considered.  
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1.  Introduction  

1.1.  Functions, moments and bounds  

 

Various bounds for functions and moments of random variables are 

considered in a number of works.  

Continuous random variables on infinite interval are analyzed in Moriguti 

(1952). The expression for lower bounds on the n-th probability moments of any 

continuous distribution is obtained under the condition of finite variance.  

Bounds for the probabilities and expectations of convex functions of discrete 

random variables with finite support are studied in Prékopa (1990).  

Inequalities for the expectations of functions are studied in Prékopa (1992). 

These inequalities are based on information of the moments of discrete random 

variables.  

A class of lower bounds on the expectation of a convex function using the first 

two moments of the random variable with a bounded support is considered in 

Dokov and Morton (2005).  

Bounds on the exponential moments of  ),min( Xy   and  }{ yXIX <   using 

the first two moments of the random variable  X  are considered in Pinelis (2011).  

In the present article some information about the variance of a random 

variable is used to estimate bounds on its expectation. 
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1.2.  Practical needs of consideration  

1.2.1.  Problems of probable and sure outcomes  

 

A man is a key subject of economics and some other sciences. There are a 

number of problems concerned with the mathematical description of the behavior of 

a man. Examples of them are the underweighting of high and the overweighting of 

low probabilities, risk aversion, the Allais paradox, risk premium, etc.  

The essence of these problems consists in biases of preferences and choices of 

people (subjects) for the probable and sure outcomes in comparison with the 

predictions of the probability theory. These biases are maximal near the boundaries 

of the probability scale, that is, at high and low probabilities. Such problems are the 

well-known, basic and fundamental ones. They are the most important in behavioral 

economics in utility and prospect theories and also in decision sciences, social 

sciences and psychology.  

The above basic problems are pointed out in a wealth of works.  

For example, we see in Kahneman and Thaler (2006) p. 222:  

“A long series of modern challenges to utility theory, starting with 

the paradoxes of Allais (1953) and Ellsberg (1961) and including framing 

effects, have demonstrated inconsistency in preferences”  

For example, we see in Kahneman and Tversky (1979) p. 265:  

“PROBLEM1: Choose between  

A:  2,500 with probability  .33, 

2,400 with probability  .66, 

0 with probability   .01; 

B:  2,400     with certainty. 

N=72   [18]   [82]” 

For example, we see in Starmer and Sugden (1991) p. 974:  

“… a choice between two lotteries R' (for "riskier") and S' (for "safer"). R' 

gave a 0.2 chance of winning ₤10.00 and a 0.75 chance of winning ₤7.00 (with 
the residual 0.05 chance of winning nothing); S' gave ₤7.00 for sure.” 

R' gives  ₤10.00×0.2 + ₤7.00×0.75 = ₤7.25.  S' gives  ₤7.00×1 = ₤7.00.  Here  R' = 
₤7.25 > S' = ₤7.00.  The results are: 13 choices for R' and 27 choices for S'.  

For example, we see in Barberis (2013) p.177 (after Gonzalez and Wu 1999) 

the median cash equivalents (in dollars) for the following non-mixed prospect:  

Outcomes  (0 or $100); Probability .90; Equivalent  $63.  

 



6 

 

 

1.2.2.  Problems of different domains  

 

Moreover, an additional and, maybe, more hard problem is the inverse 

behavior of the people in different domains. For instance, there are a number of 

warrants of risk aversion in the domain of gains but risk seeking in the domain of 

losses (at the high probabilities).  

For example, we see in Thaler (2016), p. 1582 (the boldface is my own):  

“We observe a pattern that was frequently displayed: subjects were 

risk averse in the domain of gains but risk seeking in the domain of 

losses.  

For example, we see in Kahneman and Tversky (1979) p. 268 Table 1:  

“Problem 3:  (4,000, .80)  <  (3,000).  

   [20]   [80] 

Problem 3':   (-4,000, .80)  >  (-3,000). 

   [92]   [8]” 

For example, we see in Tversky and Kahneman (1992) p. 307 in Table 3 

median cash equivalents (in dollars) for the following non-mixed prospects:  

Outcomes  (0 or $50); Probability .90; Equivalent  $37.  

Outcomes (0 or -$50); Probability .90; Equivalent -$39.  

Outcomes  (0 or $200); Probability .90; Equivalent  $131.  

Outcomes (0 or -$200); Probability .90; Equivalent -$155.  

These and similar examples will be simplified and considered below in the 

next sections.  

Note that subjects change their preferences and choices from aversion to 

seeking and vice versa not only when the domain are changed from gains to losses 

but from high to low probabilities as well. Such domains will be considered in 

future articles by means the approach and models proposed here.  

The present article is motivated in large measure by the need of rigorous 

mathematical support for the already performed analysis of the influence of 

scattering and noisiness of data. The idea of the theorem considered here has 

explained, at least partially, the above problems (see, e.g., Harin 2012a, Harin 

2012b, Harin 2015).  
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1.3.  Two ways. Variance, expectation and forbidden zones  

 

Many efforts were applied to explain the above basic problems of behavioral 

economics and other sciences.  

One of possible ways to explain them is widely discussed, e.g., in Schoemaker 

and Hershey (1992), Hey and Orme (1994), Chay et al (2005), Butler and Loomes 

(2007). The essence of this way consists in a proper attention to uncertainty, 

imprecision, noise, incompleteness and other reasons that might cause dispersion, 

scattering and spread of data.  

Another possible way to explain these problems is to consider the vicinities of 

the borders of the probability scale, e.g. at  p~1.  Steingrimsson and Luce (2007) 

and Aczél and Luce (2007) emphasized a fundamental question:  whether Prelec’s 

weighting function  W(p)  (see Prelec, 1998)  is equal to  1  at  p=1.   

In any case, one may suppose that a synthesis of the above two ways can be of 

interest. This idea of the synthesis turned out to be useful indeed. It has been 

successful to explain, at least partially, the underweighting of high and the 

overweighting of low probabilities, risk aversion, and some other problems (see, 

e.g., Harin 2012a, Harin 2012b and Harin 2015). There exist also works about 

experimental support of this synthesis (see, e.g., Harin 2014).  

In the present article some information about the variance of a random 

variable which takes on values in a finite closed interval is used to estimate bounds 

on its expectation. It is proven that if there is a non-zero lower bound on the 

variance of the variable, then non-zero bounds or forbidden zones for its 

expectation exist near the boundaries of the interval.  

The role of a noise, as a possible cause of these forbidden zones and their 

possible influence on results of measurements near the boundaries of intervals are 

preliminary considered as well.  

Keeping in mind the above bounds on functions of random variables Prékopa 

(1990), Prékopa (1992), Dokov and Morton (2005) and Pinelis (2011), functions of 

the expectation of a random variable can be further investigated.  

Due to the convenience of abbreviations and consonant with the usage in 

previous works, here the terms “bound” and “forbidden zones” will sometimes be 

referred to with the term "restriction," especially in mathematical expressions, using 

its first letter "r"  or "R,"  for example  "rExpect"  or  "rµ"  or  "R."   
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2.  Theorem  

2.1.  Preliminaries  

 

The practical need of the article is a discrete random variable taking the finite 

number of values. This corresponds to usual finite numbers of measurements in the 

behavioral economics. A general case will be considered here nevertheless.  

Let us consider a probability space  (Ω, Æ, P)  and a random variable  X,  such 

that  Ω  R.  Suppose that the support of  X  is an interval  ∞<−< )(0:],[ abba .  

Suppose that  X  can have a continuous part and a discrete part and at least one of 

these parts is not identically equal to zero.  
Let us denote the possible discrete values of  X  as ,}{ kx  ,,...,2,1 Kk =   where  

1≥K ,  and  bxa k ≤≤ ,  and the possible continuous values of  X  as  ],[ bax∈ .   

Under the condition  

1)()()()(
11

=+=+ ∫∑∫∑
=

+∞

∞−=

b

a

K

k
kX

K

k
kX dxxfxfdxxfxf ,  

let us consider the expectation of  X   

µ≡+≡ ∫∑
=

b

a

K

k
kXk dxxxfxfxXE )()(][

1

,  

its variance  

22

1

22 )()()(][ σµµ ≡+−=− ∫∑
=

b

a

K

k
kXk dxxfxxfxXE   

and possible interrelationships between them.  

 

2.2.  Conditions of the variance maximality  

 

The maximal value of the variance of a random variable of any type is 

intuitively equal to the variance of the discrete random variable whose probability 

mass function has only two non-zero values located at the boundaries of the 

interval. This statement is nevertheless proven in lemmas in the Appendix.  

Such a probability mass function can be represented by the two values       

fX(a) = (b-μ)/(b-a)  and  fX(b) = (μ-a)/(b-a).  The following inequality is 

consequently true for the variance of the considered random variable  X   

))(()()(][ 222 µµµµµµµ −−=
−
−

−+
−
−

−≤− ba
ab

a
b

ab

b
aXE .  (1)  
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2.3.  Existence theorem  

 

Theorem. Suppose a random variable  X  takes on values in an interval  [a, b],  

0 < (b-a) < ∞.  If there is some minimal non-zero variance  σ2
Min > 0 : E[X-μ]2 ≥ 

σ2
Min,  then some non-zero bounds (restrictions)  rµ ≡ rExpect ≡ rRestrict.Expect > 0  exist 

on its expectation  μ ≡ E[X]  near the boundaries of the interval  [a, b],  that is  

brbraa <−≤≤+< )()( µµ µ .      (2).  

Proof. It follows from (1) and the hypotheses of the theorem that  

))((][0 22 µµµσ −−≤−≤< baXEMin .  

For the boundary  a  this leads to the inequalities  ))((2 abaMin −−≤ µσ   and  

ab
a

Min

−
+≥

2σ
µ .        (3).  

For the boundary  b  the consideration is similar and gives the inequality  

ab
b

Min

−
−≤

2σµ .        (4).  

So, if we consider the image  Iμ  of the values of the expectation  μ,  then we 

see that, if the minimal variance  σ2
Min  is equal to zero in the above inequalities (3) 

and (4), this image coincides with the interval  [a, b].  If the minimal variance  σ2
Min  

is more than zero, then  Iμ  is divided into the three zones.  

These zones are the two forbidden zones  Rμa  and  Rμb  (or simply  Ra  and  

Rb)  and the residual obtainable or open zone  Oμ  (or simply  O).  The forbidden 

zones are located near the boundaries of the interval  [a, b].  They are restricted for 

the values of the expectation  μ.  The residual obtainable zone  O  is obtainable, 

open for the values of the expectation  μ.   

Denoting the bounds (restrictions  rµ) on the expectation  µ   as  

ab
r

Min

−
≡

2σ
µ ,         (5) 

and using (3) and (4), we obtain the generalized inequalities  

µµ µ rbra −≤≤+  .  

Therefore, if the inequalities  0 < (b-a) < ∞  and  σ2
Min > 0  are true, then the 

non-zero bounds (restrictions)  rµ > 0  exist, such that the inequalities (2)  

brbraa <−≤≤+< )()( µµ µ   

are satisfied, which proves the theorem.  
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3.  Consequences of the theorem. Examples  

3.1.  General consequences  

3.1.1.  Practical need. General implication. Mathematical support  

 

The initial reason of the above theorem was to provide the mathematical 

support for the analysis of the practical experiments in behavioral economics.  

Due to the need of financial incentives for subjects of the experiments and to 

the finiteness of financial possibilities of experimenter’s teams, the numbers of 

experimental results are necessarily finite.  

The theorem meets this practical need. It provides the mathematical support 

for the analysis of the above experiments. It proves the possibility of existence of 

the forbidden zones for the discrete random variables that take a limited number of 

values that were used in the above analysis. It determines also the conditions of 

their existence and their minimal width.  

In addition to this particular practical value, the theorem proves that this result 

is true for any random variable. The examples below and earlier works (see, e.g., 

Harin 2012b) prove that the theorem supports the analysis more than in one domain, 

moreover.  

This is, at least, a rare result for the considered problems.  
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3.1.2.  Minimal variance. Data scattering. Noise  

 

The theorem states that the factor which leads to the forbidden zones and 

determines their widths is the non-zero minimal variance. It is exactly the minimal 

variance, not the variance itself.  

There can be a wealth of causes of this non-zero minimal variance. It can be 

caused evidently by any non-zero scattering and spread of data. The list of such 

causes is rather wide. It includes a noise, imprecision, errors, incompleteness, 

various types of uncertainty, etc. Such causes are considered in a lot of works, e.g., 

Schoemaker and Hershey (1992), Hey and Orme (1994), Chay et al (2005), Butler 

and Loomes (2007).  

A noise can be one of usual sources of the non-zero minimal variance.  

There are many types and subtypes of noise. A hypothetic task of determining 

of an exact relationship between a level of noise and a non-zero minimal variance of 

random variables can be a rather complicated one.  

If, nevertheless, a noise leads to some non-zero minimal variance of the 

considered random variable, then such a noise leads evidently to the above non-zero 

forbidden zones. If a noise leads to some increasing of the value of this minimal 

variance then the value of these zones increase as well.  

So the theorem can provide a new mathematical tool for description of the 

influence of at least some types of a noise near the boundaries of intervals.  
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3.2.  Practical examples of existence  

3.2.1.  Practical example of existence. Ships and waves  

 

Suppose the calm or mirror-like sea. Suppose a small rigid boat or any other 

small rigid floating body which is at rest in the mirror-like sea. Suppose that this 

boat or the body rests in the mirror-like sea right against (or be constantly touching) 

the moorage wall (which is also rigid).  

As long as the sea is calm, the expectation of its side can touch the wall.  

Suppose the heavy sea. Suppose a small rigid boat or any other small rigid 

floating body which oscillates on waves in the heavy sea. Suppose that this boat or 

the body oscillates on waves near the rigid moorage wall.  

When the boat is oscillated by sea waves, then its side oscillates also (both up-

down and left-right) and it can touch the wall only in the nearest extremity of the 

oscillations. Therefore, the expectation of the side cannot touch the wall (if the 

oscillations are non-zero). Therefore, the expectation of the side is biased from the 

wall.   

So, one can say that, in the presence of the waves, a forbidden zone exists 

between the expectation of the side and the wall.   

This forbidden zone biases and separates the expectation from the wall. The 

width of the forbidden zone is roughly about a half of the amplitude of the 

oscillations. 

 

3.2.2.  Practical examples of existence. Washing machine, drill, … 

 

Suppose a washing machine that can vibrate when pressing bed linen. 

Suppose this washing machine near a rigid wall. Suppose an edgeless side of a drill 

or any other rigid body that can vibrate is located near a rigid surface or wall.  

If the washing machine or the drill is at rest, then the expectation of its 

edgeless side can be located right against (be constantly touching) the wall.  

If the washing machine or the drill vibrates, then the expectation of its 

edgeless side is biased and kept away from the wall due to its vibrations.  
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3.3.  General example  

3.3.1.  Rigidness  

 

The same is true for any other rigid body near any rigid surface or wall:  

If the body is at rest, then the expectation of its side can be located right 

against the wall (be constantly touching the wall). If the body vibrates, then the 

expectation of its side is biased and kept away from the wall by the vibrations.  

In other words, a forbidden zone arises between the rigid wall (surface) and 

the expectation of the side of the rigid body, when the body vibrates. The width of 

the forbidden zone is roughly about a half of the amplitude of the vibrations.  

The above rigid boat near rigid moorage wall, rigid washing machine near 

rigid wall and rigid drill near rigid surface were the examples of a rigid body that 

can vibrate or oscillate near a rigid boundary (a rigid surface).  

What do the conditions of “rigid” body and “rigid” boundary mean?   

If either the body or the boundary or the both are not rigid, then the vibrations 

and oscillations can be suppressed partially or even totally. Hence the forbidden 

zone can be suppressed also.  
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3.3.2.  Noise suppression. Sure outcomes  

 

Vibrations, oscillations can be suppressed by some efforts. Such efforts can 

be, e.g., physical in the case of the physical vibrations of the body. A vibrating rigid 

body can be pressed by some drawing or pressing force exerted by some means. 

The suppressing means and their principles of action can be of different kinds, e.g., 

a flexible or inextensible cord, a pressure plate, etc. The forbidden zone can be 

suppressed either partially or even totally, depending on the parameters of the 

suppression and suppression means.  

This suppression can correspond to the case of sure outcomes in behavioral 

economics, decision and social sciences and psychology.  

Let us compare probable and sure outcomes and corresponding biases.  

The term “sure” presumes usually that some efforts are applied to guarantee 

this sure outcome in comparison with the probable ones. This leads to some 

qualitative difference between these probable and sure outcomes. This qualitative 

difference can lead to some quantitative difference between the widths of the 

forbidden zones and hence the biases for the expectations of data for these probable 

and sure outcomes.  

Due to the guaranteeing efforts, the width of the forbidden zones and hence 

the bias for sure outcomes can be less than the width and biases for the probable 

outcomes. The width for the sure outcomes can even be equal to zero, which means 

that the cause of the forbidden zones is too weak to overcome the guaranteeing 

efforts.  

So, sure outcomes are guaranteed by some guaranteeing efforts. Due to these 

efforts, minimal variance  σ2
Sure,  the forbidden zones and the bias for the sure 

outcomes can be suppressed and reduced.  

The nature of these guaranteeing efforts can nevertheless vary for various 

cases. Therefore in the case of the sure outcomes, a consideration of the minimal 

variance  σ2
Sure  and even of the forbidden zones can be more complicated than in 

the case of the probable outcomes.  
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3.4.  Approach of biases  

3.4.1.  Preliminary considerations, suppositions and statements  

 

First of all, the modern utility and prospect theories undoubtedly constitute a 

complex set of the data, rules, suppositions etc. In addition, the above problems of 

these theories have been analyzed many times by various teams of researchers but 

have not been adequately solved nevertheless. For example, Kahneman and Thaler 

(2006) noted (see p. 222):  

“A long series of modern challenges to utility theory, starting with 

the paradoxes of Allais (1953) …, have demonstrated inconsistency in 

preferences”  

In other words, the problem that was revealed in 1953 was not adequately solved 

during more than a half of century (the available literature testifies that it was not 

adequately solved even in 2017).  

All the circumstances and reasons lead to the deduction that an essential and 

elaborated contribution to the modern utility and prospect theories needs the 

elaborated work of a sufficient number of research teams. So it cannot be made by a 

single researcher and all the more by a single theorem and single article.  

Therefore the leading principle of the approach should be “stage by stage and 

step by step.” Consequently the approach that can be based on the proposed 

theorem and its consequences and can be proposed in the present single article 

should be only a preliminary stage for subsequent changes, modifications and 

refinements by some research teams.  

So there is no sense and possibility for this single article to build a thorough 

and well-composed construction of rigorous statements proven by a wealth of 

experimental and theoretical works. So for such a preliminary stage it is sufficient 

to propose only the above theorem with its consequences and a collection of some 

suppositions, relationships and formulas.  
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Secondly, due to the theorem, the non-zero minimal variance of measurement 

data leads to the existence of the forbidden zones for the expectation of the data 

near the boundaries of the intervals of the data. These forbidden zones evidently 

lead to the biases of the expectations, at least right against the boundaries.  

The above examples of this chapter evidently illustrate such forbidden zones. 

Similar examples are widespread and usual in the practical real life. Due to this 

prevalence, the subjects can keep in mind the feasibility of such forbidden zones 

and the biases of the expectations that can be caused by the zones. This can 

influence subjects’ behavior and choices.  

Due to all these considerations, the two main suppositions and some 

preliminary statements can be proposed for the approach:  

The two main suppositions for the approach:  

1.  The subjects make their choices (at least to a considerable degree) as if 

there were some biases of the expectations of the outcomes.  

(This supposition can be supported by the thought that such biases may be 

proposed and tested even from the purely formal point of view. The mathematical 

approach of the expectations biases is to explain not only the objective situations 

but mainly the subjective behavior and choices of subjects)  

2.  These biases (real biases or subjective reaction and choices of the subjects) 

can be explained (at least to a considerable degree) with the help of the theorem.  

The preliminary statements:  

Qualitative analysis. Only qualitative analysis will be performed.  

Qualitative problems. Only qualitative problems will be considered.  

Explanation. Only explanation of the existing problems will be given. No 

predictions will be made in the scope of this first stage of the approach.  

Choices of subjects. The approach will explain mainly the subjective 

behavior and choices of subjects.  
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3.4.2.  Denotations  

 

I denote the expectations of the probable outcomes as  µProb ≡ µProbable  and of 

sure outcomes as  µSure.   

The real measurement data represent the set of the choices of the subjects. 

Using this set, one can estimate the biases of the expectations of the data for the 

probable and sure outcomes that are required to obtain the data corresponding to 

these choices. I denote them as  ΔProb ≡ ΔProbable  and  ΔSure.  

Let us consider some abstract mode 1 and mode 2 of outcomes. Irrespective of 

these numbers, one of these modes corresponds to the probable outcomes (this may 

be either mode 1 or mode 2) and the other – to the sure ones. The corresponding 

expectations are  µ1  and  µ2  and the biases are  Δ1  and  Δ2.   

One can introduce also the two more designations: a)  the difference  

12 µµµ −≡d   

between the expectations of the compared modes, b)  the difference  

12 ∆−∆≡Choiced   

that is required to obtain the data corresponding to the revealed choices.  

The simplicity of the mathematical calculations and transformations allows to 

omit the most of intermediate mathematical manipulations.  
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3.4.3.  Relationships  

 

Let us consider some essential features of the examined situations and develop 

some mathematical relationships using these denotations.  

1.  Qualitative problems. The three qualitatively situations with different 

signs of the vectors of the expectations differences for the probable and sure 

outcomes can be separated: the expectation for the probable outcome can be more, 

less or equal to that for the sure ones. The three qualitatively different signs can be 

separated for choices: the subjects can be risk averse, risk seeking or neutral.  

For the qualitative problems the signs for the choices of the subjects do not 

coincide with the signs of the expectations differences for the probable and sure 

outcomes.  

That is when the difference of the expectations for the probable and sure 

outcomes is, e.g., positive, then the corresponding difference for subjects’ choices is 

either negative or neutral.  

The necessary and sufficient condition for the qualitative problems can be 

represented mathematically as  

µddChoice sgnsgn ≠ .        (6) 

That is: if the difference  dµ  between the expectations of the compared modes is, 

for example, undoubtedly positive (the sign of  dµ  is  sgn dµ > 0), then the revealed 

choice of the subjects is such that the difference  dChoice,  that is required to obtain 

the data corresponding to this choice, should be undoubtedly negative (the sign of  

dChoice  is  sgn dChoice < 0).   

These qualitative types of the above problems are chosen as the examples that 

are usual in experiments (see, e.g., Kahneman and Tversky 1979, Starmer and 

Sugden 1991, Tversky and Kahneman 1992, Thaler 2016). They can manifest clear 

qualitative representations of the above problems and can be a background for some 

further generalizations.  
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2.  Biases and differences. The necessary and sufficient condition (6) for the 

qualitative problems can be easily transformed to the necessary condition  

|||| µddChoice ≥         (7) 

of existence of the qualitative problems. Due to  |Δµ| ≥ 0  and  dChoice = Δ2 - Δ1,  this 

leads also to  |Δ2 - Δ1| ≥ 0  and the necessary condition  

12 ∆≠∆          (8) 

of the existence of the qualitative changes. That is, to produce the qualitative 

changes, the biases of the modes 1 and 2 (of the probable and sure outcomes) 

should not be equal to each other. In other words, if the biases of the modes 1 and 2 

are equal to each other, that is  Δ2 = Δ1,  then they cannot produce the qualitative 

changes.  

This leads also to the condition  

both  01 ≠∆   and  02 ≠∆ .       (9) 

That is the biases of the modes 1 and 2 should not be simultaneously equal to zero. 

If the both of the biases are equal to zero, then they also cannot indeed produce the 

qualitative changes. In other words, “zero leads to zero” or zero biases lead to zero 

qualitative change.  

The last two particular conditions are natural within the scope of the approach 

but will be valuable if they will be proven beyond its scope. In this case they can 

support the necessity of the non-zero biases and of their mutual inequality.  

The condition (9) of the impossibility leads to the general necessary condition 

of non-zero difference between the biases for the choices  

0|| >Choiced          (10) 
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3.  Origin of biases. Condition of explanation. The biases of the 

expectations may be introduced and considered purely formally. The question is not 

only whether these biases can explain the problems. The question is also whether 

these biases themselves can be explained by the theorem.  

First of all, the theorem should be applicable. This condition is satisfied if  

02 >Minσ .  

Further let us denote the biases caused by the forbidden zones of the theorem 

by  ΔTheorem  and the difference that can be explained by the theorem as  dTheorem.  

Then the conditions for the explanation can be represented as  ΔTheorem ≈ ΔChoice  and, 

therefore,  dTheorem ≈ dChoice,  in the case when the forbidden zones of the theorem are 

the main source of the biases. If the forbidden zones of the theorem are one of the 

essential source of the biases, then the conditions for the explanation can be 

represented as  ΔTheorem = O(ΔChoice)  and, therefore,  dTheorem = O(dChoice).  So the 

conditions for the explanation can be represented as  

ChoiseTheorem dd ≈     or at least    )( ChoiseTheorem dOd = .    (11) 

The examples considered below prove that the theorem predicts the right signs 

of the difference and there is no need to state the concerned additional supposition.  

The above considerations, suppositions and formulas may be used in more 

general situations as well. Let us consider a particular supposition.  
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4.  Biases of sure outcomes. The above considerations of this sections about 

the noise suppression and sure outcomes lead to the deduction that the sure 

outcomes are guaranteed by some guaranteeing efforts. Due to these efforts, the bias 

for the sure outcomes can be suppressed and reduced. It can be moreover equal to 

zero.  

In accordance with this deduction and the supposition (10) of the difference 

between biases for the choices, I suppose that the bias of the measurement data for 

the sure outcomes is equal to zero or, more generally, is strictly less than the bias 

for the probable outcomes. The application of the supposition of the difference 

between biases enables to deduce that the absolute value of the bias for the probable 

outcomes should be non-zero. This is also in correspondence with the condition 

(10) of non-zero difference between the biases for the choices.  

This is supported by the examples considered below. They prove that the 

theorem predicts the true signs of the bias for the probable outcomes. So there is no 

need to state the concerned additional supposition.  

These suppositions can be formulated as  

0|| Pr >∆ ob   and  |||| Pr Sureob ∆>∆   and  obChoised Prsgnsgn ∆= .  (12) 

 

3.4.4.  Summary of the main supposed relationships  

for the first stage of the approach  

 

The above considerations and suppositions lead to the three groups of the 

supposed relationships:  

The supposed relationships for the qualitative problems  

µddChoice sgnsgn ≠     and    |||| µddChoice ≥ .     (13) 

The supposed relationships for the probable and sure outcomes  

0|| Pr >∆ ob   and  |||| Pr Sureob ∆>∆   and  obChoised Prsgnsgn ∆= .  (14) 

The supposed relationships for the theorem and choices  

02 >Minσ   and  ChoiseTheorem dd ≈   or at least  )( ChoiseTheorem dOd = .  (15) 
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3.5.  Qualitative models  

 

Let us consider possible qualitative models for the analysis of the above 

problems in the scope of the approach of biases.  

 

3.5.1  Theorem bound for the bias  

 

Let us estimate the limits for the biases of the expectations with the help of the 

theorem.  

Due to (5), the minimal value of the width of the forbidden zone (of the 

restriction  rµ) is  

ab
r

Min

−
=

2σ
µ     and we have    

ab

r

ab
Min

−
=

−
µσ

.  

Due to  

2

1
≤

− ab
Maxσ

    we have    
4

1
≤

− ab

rµ
.  

This is some rough estimate for the maximal width of the forbidden zone. More 

exact estimates will be given in next articles. In any case it is not more than  (b-a)/2.   

The bias of the expectation cannot be more than the width of the forbidden 

zone. The obtained estimate for the maximal width is therefore the estimate for the 

maximal bias. It should be noted that, for example, if one considers some normal 

distribution that is located near the boundary at the distance of three sigma from its 

expectation, then there is no need to use such an estimate.  

Nevertheless this estimate of  0.25(b-a)  can be used as some secure upper 

bound for the bias. We can denote this secure upper bound as ΔSequre  and write  

4

ab
Secure

−
≤∆ .  
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3.5.2  Certainty equivalents. Relative biases  

 

Let us consider the real experimental data and normalize the values of the 

biases to the values of the gains/losses. These normalized values can represent the 

relative biases of the expectations or probabilities.  

Let us consider the practical numerical examples of certainty equivalents.  

For instance, we see in the above example of Barberis (2013):  

The probable outcomes give  100*.9 = 90.  The median cash equivalent gives  

63*1 = 63.  The expectations are  

6390 >   

but the subjects manifest the equivalent choices. To provide the equivalent choices, 

the difference between the biases of the expectations for the probable and sure 

outcomes should be equal to  ΔProb - ΔSure = 27.  That is the bias for the probable 

outcome should not be less than  ΔProb ≥ 27.   

For instance, we see in the above examples of Tversky and Kahneman (1992):  

1.  Gain. The probable outcomes give  50*.9 = 45.  The median cash 

equivalent gives  37*1 = 37.  The expectations are  

3745 > ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ 8.   

Loss. The probable outcomes give  -50*.90 = -45.  The median cash 

equivalent gives  -39*1 = -39.  The expectations are  

3945 −<− ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ -6.   

2.  Gain. The probable outcomes give  200*.90 = 180.  The median cash 

equivalent gives  131*1 = 131.  The expectations are  

131180 > ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ 49.   

Loss. The probable outcomes give  -200*.90 = -180.  The median cash 

equivalent gives  -155*1 = -155.  The expectations are  

155180 −<− ,  

but the subjects manifest the equivalent choices. The bias for the probable outcome 

should not be less than  ΔProb ≥ -35.   
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Let us estimate the biases of the expectations for the probable outcomes in the 

scope of the approach.  

The values of the considered biases differ essentially from each other. Let us 

normalize them to the values of the gain/loss. These normalized values can 

represent the relative biases of the expectations or the relative biases of the 

probabilities. So we obtain:  

Barberis (2013): The relative bias is  ΔProb ≥ 30/100 =0.3.   

Tversky and Kahneman (1992):  

1.  Gain. The relative bias is  ΔRel ≥ 8/50 = 0.16.   

Loss. The relative bias is  ΔRel ≥ -6/(-50) = 0.12.   

2.  Gain. The relative bias is  ΔRel ≥ 49/200 = 0.245.   

Loss. The relative bias is  ΔRel ≥ -35/(-200) = 0.175.   

So sometimes the relative biases are comparable or even more than the above 

secure upper bound  0.25.   

Therefore, and also from general and formal points of view, the following 

supposition can be stated:  

“In general cases, along with the non-zero minimal variance of the 

measurement data, another source or sources of the biases can exist and cannot be 

excluded so far.”  
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3.5.3.  Basics of formal preliminary qualitative model  

 

So, due to the theorem estimate of the secure upper bound for the bias and the 

experiments of certainty equivalents, the theorem does not guarantee that another 

source or sources of the biases can be excluded so far. Due to the law of the mean 

and the opposite signs of the biases predicted by the theorem near the opposite 

boundaries, the bias equals zero moreover in the middles of the intervals. Therefore, 

the more is distance from the boundary the less is the bias that is caused by the 

theorem. Therefore, and also from general and formal points of view, the following 

supposition can be stated:  

“In general cases, along with the non-zero minimal variance of the data, 

another source or sources of the biases can exist and cannot be excluded so far.”  

So, for the above qualitative types of problems, the non-zero minimal variance 

of the measurement data can be considered as one of possible sources of the biases, 

but the possibility of another source or sources of the biases cannot be so far 

excluded and should be taken into account.  

This formal preliminary qualitative model can be considered as a first step of 

this first stage of the approach and is to test the qualitative applicability of the 

model and approach to the simplest specific type of the above problems. The second 

step will be to test the quantitative limits of the model and approach.  

Taking into account these considerations, the suppositions of the formal 

preliminary qualitative model can be formulated as follows:  

Suppositions. The suppositions of the qualitative problems  

µddChoice sgnsgn ≠     and    |||| µddChoice ≥ .  

The suppositions for the probable and sure outcomes  

0|| Pr >∆ ob   and  |||| Pr Sureob ∆>∆   and  obChoised Prsgnsgn ∆= .  

The supposition for the theorem and choices  

02 >Minσ   and at least  )( ChoiseTheorem dOd = .  

The suppositions of the types of the problems  

|||| µddChoice =   

for the problems of certainty equivalents and  

|||| µddChoice >   

for the other problems.  
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3.5.4.  Trial examples of applications  

of formal preliminary qualitative model  

 

Let us test the above examples of Section 1 by the formal preliminary 

qualitative model.  

In the above citation from Kahneman and Tversky (1979) p. 265 the 

difference between the expectations is  2,500*.33 + 2,400*.66 - 2,400 = 2,400 - 

2,400*.01 + 100*.33 - 2,400 = - 24 + 33 = 9.  The difference between the choices 

should be more than  9.  Let it be equal, for example, to  15.   

So the subjects decide if the resulting difference between the expectations was  

15 – 9 = 6  in favor of the sure outcome.  

The qualitative result is supported by the experiment. That is  82%  in favor of 

the sure outcome.  

In the above citation from Starmer and Sugden (1991) p. 974 the difference 

between the expectations is  10.00*.2 + 7.00*.75 - 7.00 = 2.00 + 5.25 - 7.00 = 

+0.25.  The difference between the choices should be more than  0.25  and should 

be at least partially caused by a noise.  Let it be equal, for example, to  0.4.   

So the subjects decide if the resulting difference between the expectations was  

0.4 – 0.25 = 0.15  in favor of the sure outcome.  

The qualitative result is supported by the experiment. That is  27/(13+27) = 

27/40 = 87.5%  in favor of the sure outcome.  

In the above citation from Barberis (2013) the difference between the 

expectations is  100*0.9 - 63 = 27.  The difference for the choices should be equal 

to  27  as well.  

So the subjects decide if the resulting difference between the expectations was  

27  in favor of the sure outcome. The qualitative result is supported by the 

experiment.  

 

 



27 

 

 

In the above citation from Tversky and Kahneman (1992) we can find:  

1.  Gain. The difference between the expectations is  50*0.9 - 37 = 8.  The 

difference for the choices should be equal to  8  as well.  

So the subjects decide if the resulting difference between the expectations was  

8.  This qualitative result is supported by the experiment.  

Loss. The difference between the expectations is  -50*0.9 – (-39) = -6.  The 

difference for the choices should be equal to  -6  as well.  

So the subjects decide if the resulting difference between the expectations was  

-6.  This qualitative result is supported by the experiment.  

2.  Gain. The difference between the expectations is  200*.90 - 131 = 49.  The 

difference for the choices should be equal to  49  as well.  

So the subjects decide if the resulting difference between the expectations was  

49.  This qualitative result is supported by the experiment.  

Loss. The difference between the expectations is  -200*.90 - (-155) = -35.  

The difference for the choices should be equal to  -35  as well.  

So the subjects decide if the resulting difference between the expectations was  

-35.  This qualitative result is supported by the experiment.  

In all the above examples the difference between the choices should be at least 

partially caused by the non-zero minimal variance of the data. These examples of 

applications of the formal preliminary qualitative model are trial because there is so 

far too little information about what part of the difference between the choices is 

caused by the non-zero minimal variance of the data.  
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3.5.5.  Specific qualitative model  

 

Let us consider the specific situation when  dµ = 0.  That is the expectations of 

the probable and sure outcomes are equal to each other, but the choices of the 

subjects are evidently biased to either probable or sure outcomes.  

Due to the difference of the expectations is equal to zero, the difference for the 

choices should be either negative or positive.  

This specific situation enables to avoid the constraints of the secure upper 

bound  ΔSequre  for the bias and to make the specific qualitative model less formal. 

The biases can be selected much less than  ΔSequre  and suppositions will be more 

simple.  

Suppositions. So the suppositions of the specific qualitative model can be 

formulated as follows:  

The suppositions for the differences for the biases of the choices and 

expectations  

0sgn =µd   and  0≈Maxd   and  0|| Pr >∆>>∆ obSecure .  

The suppositions for the probable and sure outcomes  

|||| Pr Sureob ∆>∆   and  obChoised Prsgnsgn ∆= .  

The supposition for the theorem and choices  

02 >Minσ   and  ChoiseTheorem dd ≈ .  

This specific qualitative practical model can be considered as a first informal 

step of an explanation of the above problems. The model will be applied to practical 

numerical examples in the next chapter.  
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4.  Applications of the theorem. Newness  

4.1.  Practical applications in behavioral economics and decision sciences  

 

The idea of the considered forbidden zones was applied, e.g., in Harin 

(2012b). This work was devoted to the well-known problems of utility and prospect 

theories and was performed for the purposes of behavioral economics, decision and 

social sciences and psychology. Such problems were pointed out, e.g., in Kahneman 

and Thaler (2006).  

In Harin (2012b), some examples of typical paradoxes were studied. The 

studied and similar paradoxes may concern problems such as the underweighting of 

high and the overweighting of low probabilities, risk aversion, etc.  

The dispersion and noisiness of the initial data can lead to the forbidden zones 

for the expectations of these data. This should be taken into account when dealing 

with these kinds of problems. The described above forbidden zones explained, at 

least partially, the analyzed examples of paradoxes.  

The concrete numerical examples of analysis and explanation of such 

problems by the proposed specific qualitative practical model will be considered 

below. To emphasize the uniformity of the proposed models, the parameters and 

analysis will be the same for the different domains.  

The specific qualitative practical model is allowed to use small and convenient 

biases. It is convenient to consider integer numbers. The minimal non-zero integer 

for the bias for the sure outcome is  $1.  Hence the minimal integer for the bias for 

the probable outcomes is  $2.  Suppose that the parameters of the particular 

qualitative model for the gains are: the bias for the probable outcomes is equal to  

$2,  and for the sure outcome the bias is equal to  $1  or to zero.  
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4.2.  Practical numerical example. Gain  

 

The above examples can be simplified to specific qualitative ones similar to 

Harin (2012b):  

Imagine that you face the following pair of concurrent decisions.  

Choose between:  

A)  A sure gain of $99.  

B)  99% chance to gain $100 and 1% chance to gain or lose nothing.  

 

4.2.1.  Ideal case  

 

In the ideal case, without taking into account the dispersion of the data, the 

expected values for the probable and sure outcomes are  

99$%10099$ =× ,  

99$%99100$ =× .  

Here, the ideal expected values are exactly equal to each other  

99$99$ = .  

Therefore the both outcomes should be equally preferable.  

So in the ideal case, without taking into account the dispersion of the data, the 

probable and sure outcomes should be equally preferable.  
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4.2.2.  Forbidden zones and biases  

 

In the real case, one should take into account the dispersion of the data, some 

minimal non-zero variance caused by this dispersion and the forbidden zones 

caused by this variance. These forbidden zones can lead to the biases of the 

expectations, at least for the probable outcomes. Let us consider the case of the non-

zero variance of the data, corresponding forbidden zones and biases.  

Let the bias be equal to, say,  ΔProb = $2  for the probable outcomes.  

Let us consider the case when the bias for the sure outcome is equal to  $1.  

We have  
98$1$99$%10099$ =−=∆−× Sure ,  

97$2$99$%99100$ Pr =−=∆−× ob .  

Here, the probable expected value is biased more than the sure one and we have  

97$98$ > .  

Let us consider the case when the bias for the expectations of data for the sure 

outcome is equal to zero. We have  
99$0$99$%10099$ =−=∆−× Sure ,  

97$2$99$%99100$ Pr =−=∆−× ob .  

Here, the probable expected value is biased but the sure expected value is not and 

we have  

97$99$ > .  

In all the cases, the probable expected value is biased more than the sure one. 

The bias decreases the advantage (preference) of the outcome. Therefore the 

probable gain is (due to the obvious difference between the expected values) less 

preferable than the sure one.  

We see the clear and evident difference between the expected values and the 

corresponding salient and unequivocal preferences and choices.  

So the theorem provides the mathematical support for the above analysis in 

the domain of gains.  

So, the forbidden zones and their natural difference for probable and sure 

outcomes can predict the experimental fact that the subjects are risk averse in the 

domain of gains. They explain, at least qualitatively or partially, the analyzed 

example of Thaler (2016) and many other similar results.   

The theorem provides the mathematical support for the analysis in the domain 

of gains. 
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4.3.  Practical numerical example. Loss  

 

The case of gains has been explained many times in a lot of ways. The 

uniform explanation for both gains and losses, without additional suppositions, such 

as in Kahneman and Tversky (1979), has not been recognized nevertheless by the 

author of the present article.  

Let us consider the case of losses under the same suppositions as gains.  

Imagine that you face the following pair of concurrent decisions. Choose 

between:  

A)  A sure loss of $99.  

B)  99% chance to loss $100 and 1% chance to gain or lose nothing.  

 

4.3.1.  Ideal case  

 

In the ideal case without the forbidden zones, the expected values for the 

probable and sure outcomes are  

99$%10099$ −=×− ,  

99$%99100$ −=×− .  

Here, the expected values are exactly equal to each other  

99$99$ −=− .  

Therefore the both outcomes should be equally preferable.  

So in the ideal case, without taking into account the dispersion of the data, the 

probable and sure outcomes should be equally preferable.  
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4.3.2.  Forbidden zones and biases 

 

Let us consider the case of the forbidden zones and biases under the same 

suppositions as for the gains. That is for the same parameters of the models.  

The forbidden zone biases the expectation from the boundary of the interval to 

its middle. The bias is subtracted from the absolute value for the both cases of gains 

and losses therefore. That is, due to the opposite signs of the values for gains and 

losses, the bias is subtracted from the expected values for the gains and added to the 

expected values for the losses. It should be emphasized that this is not a supposition 

but a rigorous conclusion. Therefore the applications of the specific qualitative 

model are naturally uniform for more than one domain.  

The parameters of the specific qualitative model for the gains are: the bias for 

the probable outcomes is equal to  $2,  and for the sure outcome to  $1  or to zero.  

Let us consider the case when the bias for the sure outcome is equal to  $1.  

We have  
98$1$99$%10099$ −=+−=∆+×− Sure ,  

97$2$99$%99100$ Pr −=+−=∆+×− ob .  

Here, the probable expected value is biased more than the sure one and we have  

97$98$ −<− .  

Let us consider the case when the width of the forbidden zones for the 

expectations of data in the sure outcome is equal to zero. We have  
99$0$99$%10099$ −=+−=∆+×− Sure ,  

97$2$99$%99100$ Pr −=+−=∆+×− ob .  

Here, the probable expected value is biased but the sure expected value is not and 

we have  

97$99$ −<− .  

In all the cases, the probable expected value is biased more than the sure one 

as in the case of gains, but here the bias increases the advantage (preference) of the 

outcome and the probable loss is (due to the obvious difference between the 

expected values) more preferable than the sure one.  

We see the clear and evident difference between the expected values and the 

corresponding salient and unequivocal preferences and choices.  

So the theorem can be naturally, uniformly and successfully applied in the 

domain of losses as well. Instead of the seeming simplicity of these applications, the 

author has not revealed such successful and uniform applications in more than one 

domain in the literature.  
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4.6.  Practical application. Newness  

 

So, the theorem provides the mathematical support for the explanation of the 

above problems in the domains of both gains and losses. 

Due to, e.g., Harin (2012b), the forbidden zones and their natural difference 

for probable and sure outcomes can predict the experimental fact that the subjects 

are risk seeking in the domain of gains but risk seeking in the domain of losses. 

They explain, at least qualitatively or partially, the analyzed examples of Thaler 

(2016) and many other similar results.  

The important feature is that, due to, e.g., Harin (2012b), the described 

forbidden zones can explain the problems and explain experimental results not only 

in the domains of the gains and losses. The important feature is also that this 

explanation is uniform in all the domains and need not additional suppositions. 

Hence the forbidden zones and their natural difference for probable and sure 

outcomes can qualitatively or, at least, partially predict the experimental facts and 

explain the problems in various domains.  

The mathematical description of the above forbidden zones has been done in 

recent years. Unfortunately, these zones were not described in mathematics before.  

The analysis of the literature, comments of comments of journals’ editors and 

reviewers on similar articles and on the previous versions of the present article and 

more than 10-years experience of the editorship in NEP reports on utility and 

prospect theories (see Harin 2005-2017) allow to suppose the following.  

The mathematical support for the above explanation, which is presented by 

the theorem and its consequences, is a new one.  

Why did not this evident and widespread phenomenon be mathematically 

described before? The long absence of such a description can be explained by the 

evidence of its practical applications. That is these forbidden zones can be easily 

estimated as approximately a half of the amplitude of the oscillations and there is no 

need in more detailed analysis and calculation. The phenomena that are similar to 

the forbidden zones between ships boards and moorage wall, washing machines and 

walls, etc. are evident and are usually taken into account in the cases of their 

evident and essential influence.  

The problems and paradoxes of the behavioral economics, utility and prospect 

theories are, probably, the first field where such phenomena are hidden by other 

details of experiments and hence are non-evident.  
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4.7.  Possible applications. Noise. Biases of measurement data  

4.5.1.  Noise  

 

Let us preliminary consider possible applications of the theorem to a noise.  

If a noise leads to some non-zero minimal variance of the considered random 

variable, then this non-zero minimal variance and, consequently, this noise leads to 

the above non-zero forbidden zones for the expectation of this variable. If a noise 

leads to some increasing of the value of this minimal variance then the width of 

these forbidden zones increases also.  

The presented theorem allows to make a step to developing of a possible new 

mathematical tool for description of the possible influence of noise near the 

boundaries of finite intervals. In particular, if a noise leads to a non-zero minimal 

variance  σ2
Min : σ2 > σ2

Min > 0  of a random variable, then the theorem predicts the 

forbidden zones having the width  rNoise  which is not less than  

ab
r

Min

Noise −
≥

2σ
.  

So, the presented theorem is the first preliminary step to a general 

mathematical description of the possible influence of noise near the boundaries of 

finite intervals.  
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4.5.2.  Biases of measurement data  

 

Let us preliminary consider possible applications of the theorem to possible 

biases of measurement data.  

The considered forbidden zones can evidently lead to some biases in 

measurements. We can preliminary consider this a bit closer. Suppose some 

measurements are performed on a finite interval and its result is the expectation of 

the measurement data. Suppose some forbidden zones arise near the boundaries of 

the interval due to the minimal variance of the data.  

The expectations of the data of the measurements cannot be indeed located 

inside the forbidden zones. They cannot be located closer to the boundaries of the 

interval than the width of the forbidden zone.  

So the above forbidden zones can cause biases for the expectations of the data 

of measurements. The biases are directed from the boundaries to the middle of the 

interval. The biases have the opposite signs near the opposite boundaries of the 

interval. The absolute values of the biases decrease from the boundaries to the 

middle of the interval.  

When the minimal variance of the data is equal to zero, then the expectations 

of the data of measurements can touch the boundaries of the interval. When the 

above forbidden zones are not taken into the consideration then the estimated results 

are also located closer to the boundaries than the real case. Hence the estimated 

results are biased in the comparison with the real ones.  

Particular example of the biases. If the minimal variance of the data  σ2
Min  is 

non-zero, that is if  σ2 > σ2
Min > 0, then the theorem predicts that near the 

boundaries of intervals, the absolute value  ΔBias  of the biases is not less than  

ab

Min

Bias −
≥∆

2

||
σ

.  

So, the presented theorem, its consequences and applications can be 

considered as the first preliminary step to a general mathematical description of the 

biases of measurement data near the boundaries of finite intervals.  
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5.  Conclusions and discussion  

 

The article can be concluded by the following five items:  

1)  Problems. There are well-known problems of behavioral economics (see, 

e.g., Hey and Orme 1994, Kahneman and Thaler 2006, Thaler 2016):  

The choices of the subjects (people) don’t correspond to the expectations of 

outcomes.  

Some of the typical problems consist in comparison of sure and probable 

outcomes (see, e.g., Kahneman and Tversky 1979, Starmer and Sugden 1991, 

Barberis 2013, Thaler 2016). They are the most pronounced near the boundaries of 

intervals. For example, Thaler (2016) states (the boldface is my own):  

“We observe a pattern that was frequently displayed: subjects were risk 

averse in the domain of gains but risk seeking in the domain of losses.”  

The above problems can be represented in simplified and demonstrable form 

by the qualitative and specific qualitative problems that are considered in the 

present article similar to Harin (2012b). These specific qualitative problems are:  

Domain of gains. Choose between:  

A)  A sure gain of  $99.   

B)  99%  chance to gain  $100  and  1%  chance to gain or lose nothing.  

The expectations are  

%99100$99$99$%10099$ ×===× .  

Domain of losses. Choose between:  

A)  A sure loss of  -$99.   

B)  99%  chance to loss  -$100  and  1%  chance to gain or lose nothing.  

The expectations are  

%99100$99$99$%10099$ ×−=−=−=×− ,  

The expected values are exactly equal to each other in the both domains. 

Nevertheless a wealth of experiments (see, e.g. Kahneman and Tversky 1979, 

Starmer and Sugden 1991, Thaler 2016) prove that the choices of the subjects are 

essentially biased. Moreover as is pointed out, e.g., in Thaler (2016), they are biased 

in the opposite directions for gains and losses. These are the well-known and 

fundamental problems that are usual in behavioral economics and other sciences.  
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2)  Analysis of the problems. A new analysis of these problems was 

developed in recent years (see, e.g., Harin 2012a, Harin 2012b, Harin 2015). The 

analysis is founded on the idea of the forbidden zones studied here and enables at 

least qualitative explanation of these problems (see, e.g., Harin 2012b).  

3)  Mathematical support for the analysis. The forbidden zones theorem is 

proven in the present article. The theorem states that, for a finite interval  [a, b]  

under the condition of existence of some non-zero minimal variance  σ2
Min : σ2 ≥ 

σ2
Min > 0,  the expectation  µ   of the measurement data is separated from the 

boundaries of the interval by the forbidden zones  

ab
b

ab
a

MinMin

−
−≤≤

−
+

22 σµσ
.  

In other words, the theorem proves the possibility of existence of the forbidden 

zones that were used in the above analysis. The forbidden zones can exist near the 

boundaries of the intervals of the measurement data. The theorem also determines 

the conditions of the existence of the zones and their minimal width.  

4)  Mathematical approach for the analysis. The mathematical approach of 

the biases is founded on the theorem and is to explain not only the objective 

situations but mainly the subjective behavior and choices of subjects.  

The two main suppositions of the approach are:  

1.  The subjects make their choices (at least to a considerable degree) as if 

there were some expectations biases of the outcomes.  

(This supposition can be supported by the thought that such biases may be 

proposed and tested even from the purely formal point of view)  

2.  These biases (real biases or subjective reaction and choices of the subjects) 

can be explained (at least to a considerable degree) with the help of the theorem.  

The first stage of the approach is the qualitative mathematical explanation of 

the qualitative problems.  

The main supposed relationships of the first stage of the approach can be 

accumulated into the three groups:  

The supposed relationships (13) of the qualitative problems  

µddChoice sgnsgn ≠     and    |||| µddChoice ≥ .  

The supposed relationships (14) about the probable and sure outcomes  

0|| Pr >∆ ob   and  |||| Pr Sureob ∆>∆   and  obChoised Prsgnsgn ∆= .  

The supposed relationships (15) about the theorem and choices  

02 >Minσ   and  ChoiseTheorem dd ≈   or at least  )( ChoiseTheorem dOd = .  

 



39 

 

 

5)  Mathematical qualitative models for the analysis. The specific 

qualitative mathematical model and the basics of the general qualitative 

mathematical models are developed here.  

5.1)  Specific qualitative model. The specific qualitative mathematical model 

is intended for the practical analysis of the above problems in the specific case 

when the expectations of the data for the probable and sure outcomes are exactly 

equal to each other. The model can be considered as the first step of the first stage 

of the approach.  

The model implies the application of the forbidden zones theorem under the 

following two suppositions:  

1.  Probable outcomes. Due to relationships (14) of the approach, the bias  

0|| Pr >∆ obable   

should be finite but can be as small as possible. Therefore the minimal variance of 

the measurement data for the probable outcomes can be supposed to be equal to an 

arbitrary non-zero value that is as small as possible to be evidently explainable by a 

common noise and scattering of the data. 

Due to the theorem, this supposition leads to the non-zero forbidden zones for 

the expectations of the data for the probable outcomes near the boundaries of the 

intervals and, consequently, to some small but non-zero biases of these 

expectations, at least right against the boundaries.  

2.  Sure outcomes. The bias for the sure outcomes is equal to zero or is strictly 

less than the bias for the probable outcomes.  
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Numerical examples. In the scope of the specific qualitative model, suppose 

that the biases of the expectations are equal, for example, to  ΔProb = $2  for the 

probable outcomes and  ΔSure = $1  for the sure outcomes. Then we have:  

Gains. In the case of gains we have  
98$1$99$%10099$ =−=∆−× Sure ,  

97$2$99$%99100$ Pr =−=∆−× ob .  

The probable expected value is biased more than the sure one. The biases are 

directed from the boundary to the middle of the interval and, hence, decrease the 

modules of the values and the both values themselves. Therefore the biased sure 

expected value is more than the biased probable one  

97$98$ > .  

The sure gain is evidently more preferable than the probable one and this choice is 

supported by a wealth of experiments.  

Losses. In the case of losses we have  
98$1$99$%10099$ −=+−=∆+×− Sure ,  

97$2$99$%99100$ Pr −=+−=∆+×− ob .  

The probable expected value is biased more than the sure one. The biases are 

directed from the boundary to the middle of the interval and, hence, reduce the 

modules of the values but, due to their negative signs, increase the both values. 

Therefore the biased sure expected value is less than the biased probable one  

97$98$ −<− .  

The probable loss is evidently more preferable than the sure one and this choice is 

supported by a wealth of experiments.  

So, the qualitative model enables the qualitative analysis and qualitative 

explanation for the above problems in more than one domain.  
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5.2)  Basics of general qualitative model. The basics of the general formal 

preliminary qualitative mathematical model are considered in the present article.  

The suppositions of the model can be formulated as follows:  

The suppositions of the qualitative problems  

µddChoice sgnsgn ≠     and    |||| µddChoice ≥ .  

The suppositions for the probable and sure outcomes  

0|| Pr >∆ ob   and  |||| Pr Sureob ∆>∆   and  obChoised Prsgnsgn ∆= .  

The supposition for the theorem and choices  

02 >Minσ   and at least  )( ChoiseTheorem dOd = .  

The suppositions of the types of the problems are:  

|||| µddChoice =   

for the problems of certainty equivalents and  

|||| µddChoice >   

for the other problems.  

Main contributions. The four main particular contributions of the present 

article are the mathematical support, approach and specific qualitative model for the 

above analysis and the successful uniform application of this model in more than 

one domain.  

The author has not revealed in the literature such a natural, uniform and 

successful application of a model in more than one domain of the discussed 

problems. Hence, instead of seeming simplicity, the successful natural and uniform 

application of the specific qualitative model in more than one domain also belongs 

to the main contributions.  
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Possible additional contributions. Two more possible additional general 

contributions can be preliminary mentioned:  

Possible general addition. Noise. In addition, possible general consequences 

and applications of the theorem for a noise are preliminary considered.  

In particular, let us suppose that some type of noise leads to a non-zero 

minimal variance  σ2
Min : σ2 > σ2

Min > 0  of a random variable, then the theorem 

predicts the existence of the forbidden zones having the width  rNoise  which is not 

less than  

ab
r

Min

Noise −
≥

2σ
.  

The future goal of this consideration is a general mathematical description of 

the possible influence of noise near the boundaries of finite intervals.  

Possible general addition. Biases. In addition, possible general consequences 

and applications of the theorem for biases of measurement data are preliminary 

considered.  

In particular, if the minimal variance of the data  σ2
Min  is non-zero, that is if  

σ2 > σ2
Min > 0, then the theorem predicts the biases of measurement data in general 

cases. The biases have the opposite signs near the opposite boundaries, are maximal 

near the boundaries and tend to zero in the middles of the intervals. Right against 

the boundaries of intervals, the absolute value  ΔBias  of the biases is not less than  

ab

Min

Bias −
≥∆

2

||
σ

.  

The future goal of this consideration is a general mathematical description of 

the biases of measurement data that can be caused by the above forbidden zones.  
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Appendix. Lemmas of variance maximality conditions  

Preliminaries  

 

The initial particular need is the mathematical support for the analysis (see, 

e.g., Harin 2012a, Harin 2012b and Harin 2015) of the problems of behavioral 

economics. These problems take place for the discrete finite random variables. 

Nevertheless let us give the support for the general case.  

In the general case, we have (see subsection 2.1)  

∫∑ −+−=−
=

b

a

K

k
kk dxxfxxpxXE )()()()(][ 2

1

22 µµµ .  

under the condition that either the probability mass function or probability density 

function or alternatively both of them are not identically equal to zero, or  

1)()(
1

=+ ∫∑
=

b

a

K

k
k dxxfxp .  

Pairs of values whose mean value coincides with the expectation of the 

random variable were used, e.g., in Harin (2013). More arbitrary choice of pairs of 

values was used in Harin (2017). Here every discrete and infinitesimal value will be 

divided into the pair of values in the following manner:  

Let us divide every value  p(xk)  into the two values located at  a  and  b   

ab

xb
xp k

k −
−

)(     and    
ab

ax
xp k

k −
−

)( .  

The total value of these two parts is evidently equal to  p(xk).  The center of gravity 

of these two parts is evidently equal to  xk.   

Let us divide every value of  f(x)  into the two values located at  a  and  b   

ab

xb
xf

−
−

)(     and    
ab

ax
xf

−
−

)( .  

The total value of these two parts is evidently equal to  f(x).  The center of gravity 

of these two parts is evidently equal to  x.   

Let us prove that the variances of the divided parts are not less than those of 

the initial parts.  
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A1.  Lemma 1. Discrete part  

 

Lemma 1. Discrete part lemma. If the support of a random variable  X,  is an 

interval  ∞<−< )(0:],[ abba   and its variance can be represented as  

22

1

22 )()()(][ σµµ ≡+−=− ∫∑
=

b

a

K

k
kk dxxfxxpxXE ,  

where  p  is the probability mass function of  X,  bxa k ≤≤ ,  ,,...,2,1 Kk =   where  

1≥K   and  µ ≡ E[X]  and  

0)(
1

≥∑
=

K

k
kxp ,  

then the inequality  

∑

∑

=

=

−≥

≥





−
−

−+
−
−

−

K

k
kk

K

k
k

kk

xpx

xp
ab

ax
b

ab

xb
a

1

2

1

22

)()(

)()()(

µ

µµ
.    (16) 

is true.  

Proof. Let us find the difference between the transformed  

∑
=







−
−

−+
−
−

−
K

k
k

kk xp
ab

ax
b

ab

xb
a

1

22 )()()( µµ   

and initial  

∑
=

−
K

k
kk xpx

1

2 )()( µ   

expressions for the variance.  

Let us consider separately the cases of  xk ≥ µ  and  xk ≤ µ.   
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A.1.1.  Case of  xk ≥ µ   

 

If  xk ≥ µ,  then the expression in the square brackets can be simplified  




















−
−

−
−
−

−=

=



 −−

−
−

−≥

≥



 −−

−
−

−+
−
−

−

2

2

22

222

)(

)()(

)()()(

µ
µµ

µµ

µµµ

b

x

ab

ax
b

x
ab

ax
b

x
ab

ax
b

ab

xb
a

kk

k
k

k
kk

.  

Due to  xk ≤ b  and  

10 ≤
−
−

≤
µ
µ

b

xk ,  

it holds true that  

µ
µ

µ
µ

−
−

≤







−
−

b

x

b

x kk

2

  

and  

µ
µ

µ
µ

−
−

−
−
−

≥







−
−

−
−
−

b

x

ab

ax

b

x

ab

ax kkkk

2

  

and then  

µ
µ

µµ
µµ

µ
µ

−
−

−
−+−
−+−

≡
−
−

−
−
−

b

x

ab

ax

b

x

ab

ax kkkk

)()(

)()(
.  

Due to  

10 ≤
−
−

≤
ab

axk     and    0≥− aµ ,  

the inequality  

µ
µ

µµ
µµ

−
−

≥
−+−
−+−

b

x

ab

ax kk

)()(

)()(
  

is true and  

0)(

2

2 ≥



















−
−

−
−
−

−
µ
µµ

b

x

ab

ax
b kk

.  

So in the case of  xk ≥ µ  the difference between the transformed and initial 

expressions for the variance is non-negative.  
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A.1.2.  Case of  xk ≤ µ   

 

If  xk ≤ µ,  then  




















−
−

−
−
−

−=

=



 −−

−
−

−≥

≥



 −−

−
−

−+
−
−

−=

=



 −−

−
−

−+
−
−

−

2

2

22

222

222

)(

)()(

)()()(

)()()(

a

x

ab

xb
a

x
ab

xb
a

x
ab

ax
b

ab

xb
a

x
ab

ax
b

ab

xb
a

kk

k
k

k
kk

k
kk

µ
µµ

µµ

µµµ

µµµ

.  

Due to  

10 ≤
−
−

≤
a

xk

µ
µ

,  

we have  

a

x

ab

xb

a

x

ab

xb kkkk

−
−

−
−
−

≥







−
−

−
−
−

µ
µ

µ
µ

2

.  

Then  

a

x

ab

xb

a

x

ab

xb kkkk

−
−

−
−+−
−+−

≡
−
−

−
−
−

µ
µ

µµ
µµ

µ
µ

)()(

)()(
.  

Due to  

10 ≤
−
−

≤
a

xk

µ
µ

    and    0≥− µb   

we have  

a

x

ab

xb kk

−
−

≥
−+−
−+−

µ
µ

µµ
µµ

)()(

)()(
  

and  

0)(

2

2 ≥



















−
−

−
−
−

−
a

x

ab

xb
a kk

µ
µµ .  

So in the case of  xk ≤ µ  the difference between the transformed and initial 

expressions for the variance is non-negative.  
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A.1.3.  Maximality  

 

So the difference  





 −−

−
−

−+
−
−

−=

=−−
−
−

−+
−
−

−

222

222

)()()()(

)()()()()()(

µµµ

µµµ

k
kk

k

kk
k

k
k

k

x
ab

ax
b

ab

xb
axp

xpx
ab

ax
xpb

ab

xb
xpa

.  

is non-negative.  

Let us calculate the difference between the transformed and initial expressions 

of the discrete part of the variance  

∑

∑∑

=

==





 −−

−
−

−+
−
−

−=

=−−

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

−
−

−+
−
−

−=

=−−−

K

k
kk

kk

K

k
kk

K

k
k

kk

InitialDiscrdTransformeDiscr

xpx
ab

ax
b

ab

xb
a

xpxxp
ab

ax
b

ab

xb
a

XEXE

1

222

1

2

1

22

2
.

2
.

)()()()(

)()()()()(

][][

µµµ

µµµ

µµ

.  

Every member of a sum is non-negative, as in the above expression. Hence the total 

sum is non-negative as well.  

So for the discrete case the variance is maximal when the probability mass 

function is concentrated at the boundaries of the interval.  
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−
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−=

=−−





−
−
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−
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K
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K
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k
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InitialDiscrdTransformeDiscr

xpx
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ax
b

ab

xb
a

xpxxp
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ax
b

ab
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XEXE

1

222

1

2

1

22

2
.

2
.

)()()()(

)()()()()(

][][

µµµ

µµµ

µµ

.  

If every member of a sum is non-negative, as in the above expression, then the total 

sum is non-negative as well.  
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A.1.4.  Theorem of Huygens-Steiner  

 

Also the expression  

)()()()( 22 axbxba kk −−+−− µµ .  

can be identically rewritten to  

)]()())((2)[(

)]()())((2)[(

)()]()[(

)()]()[(

22

22

2

2

axxxxbxb

xbxxaxax

axxxb

xbxax

kkkkk

kkkkk

kkk

kkk

−−+−−+−+

+−−+−−+−=

=−−+−+

+−−+−

µµ

µµ

µ

µ

.  

and  

)]())[()((2

)()()()(

)()(

)]()())((2)[(

)]()())((2)[(

22

2

22

22

µµ

µ

µµ

µµ

−+−−−+

+−−+−−+

+−−=

=−−+−−+−+

+−−+−−+−

kkkk

kkkk

k

kkkkk

kkkkk

xxxbax

axxbxbax

abx

axxxxbxb

xbxxaxax

.  

This can be transformed to the expression  

)()()()(

)(
22

2

axbxba

x

kk

k

−−+−−

+−

µµ

µ
  

that is analogous to the theorem of Huygens-Steiner (The general possibility of 

application of the Huygens-Steiner theorem was helpfully pointed out by one of the 

anonymous referees when the preceding version of the present article was refereed)  

 

 



51 

 

 

A2.  Lemma 2. Continuous part  

 

Let the probability density function is not identically equal to zero.  

Lemma 2. Continuous part lemma. If the support of a random variable  X,  

is an interval  ∞<−< )(0:],[ abba   and its variance can be represented as  

22
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22 )()()(][ σµµ ≡+−=− ∫∑
=

b

a

K

k
kk dxxfxxpxXE ,  

where  f  is the probability density function of  X  and  µ ≡ E[X]  and 

0)( ≥∫
b

a

dxxf ,  

then the inequality  
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is true.  

Proof. Let us find the difference between the transformed  
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and initial  

∫ −
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a

dxxfx )()( 2µ   

expressions for the variance.  

Let us consider separately the cases of  x ≥ µ  and  x ≤ µ.   
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A.2.1.  Case of  x ≥ µ   

 

If  xk ≥ µ,  then the difference can be simplified as  
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A.2.2.  Case of  x ≤ µ   

 

If  x ≤ µ,  then the difference can be simplified as  
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A.2.3.  Maximality  

 

Let us calculate the difference between the transformed and initial expressions 

of the continuous part of the variance  
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.  

If the integrand of an integral is non-negative for every point in the scope of the 

limits of integration as in the above expression, then the complete integral is non-

negative as well. The difference is therefore non-negative.  

So for the continuous case the variance is maximal when the probability 

density function is concentrated at the boundaries of the interval.  
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A3.  Lemma 3. Mixed case  

 

Let the probability mass function is not identically equal to zero.  

Lemma 3. General mixed case lemma. If the support of a random variable  

X,  is an interval  ∞<−< )(0:],[ abba   and its variance can be represented as  
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where  p  is the probability mass function of  X,  bxa k ≤≤ ,  ,,...,2,1 Kk =   where  

1≥K   and  f  is the probability density function of  X  and  µ ≡ E[X]  and  
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is true.  

Proof. The general mixed case is compiled from the discrete and continuous 

parts under the condition that at least one of them is not identically equal to zero. 

The conclusions concerned to these parts are true for their sum as well.  

So in any case both for the probability mass function and/or probability 

density function and/or their mixed case, the variance is maximal when the 

probability mass function and/or probability density function are concentrated at the 

boundaries of the interval in the form of the probability mass function that has only 

the two values located at the boundaries of the interval.  

 

 


